Bolun Dai

An Introduction to Control Barrier Function Theory and Application

Motivation Safe Control

Motivation Agile Behavior Under Constraints

Applications Bipedal Locomotion

3D Dynamic Walking on Stepping Stones with Control Barrier Functions

Quan Nguyen, Ayonga Hereid, J. W. Grizzle, Aaron Ames, Koushil Sreenath

Nguyen et al (2016). 3D dynamic walking on stepping stones with control barrier functions.

Applications Quadruped Locomotion

Grandia et al (2021). Multi-Layered Safety for Legged Robots via Control Barrier Functions and Model Predictive Control

Structure of this talk

- Control Barrier Function (CBF)
- CLF-CBF-QP
- CBF Example
- Exponential Control Barrier Function (ECBF)
- ECBF Example
- CBF Research

Control Barrier Function (CBF) Nagumo's Invariance Principle

- $\mathscr{C} = \{x \in \mathbb{R}^n \mid h \geq 0\}$
- .
]
/ *h*(*x*) ≥ 0, ∀*x* ∈ ∂

Control Barrier Function (CBF) Nagumo's Invariance Principle

Given a dynamical system $\dot{x} = f(x)$ with $x \in \mathbb{R}^n$, and assume that the safe set is the superlevel set of a smooth function $h : \mathbb{R}^n \to \mathbb{R}$, $\dot{x} = f(x)$ with $x \in \mathbb{R}^n$

then $\mathscr C$ is forward invariant if and only if $h(x) \geq 0$ for all $x \in \partial \mathscr C$. .
]
/ $h(x) \geq 0$ for all $x \in \partial$

Nagumo, M. (1942). Über die Lage der Integralkurven gewöhnlicher Differentialgleichungen.

 $\mathscr{C} = \{x \in \mathbb{R}^n \mid h \geq 0\}$

Control Barrier Function (CBF) Control Affine Systems

Control affine systems have the form of .
X

 $x \in \mathbb{R}^n, f: \mathbb{R}^n \to \mathbb{R}^n, g: \mathbb{R}^n \to \mathbb{R}^{n \times m}$ and $u \in \mathbb{R}^m$. Control affine system are very common, most mechanical systems are control affine

$$
\begin{bmatrix} \dot{\mathbf{q}} \\ \ddot{\mathbf{q}} \end{bmatrix} = \begin{bmatrix} M^{-1}(\mathbf{q}) \\ M^{-1}(\mathbf{q}) \end{bmatrix}
$$

 $\dot{\mathbf{x}} = f(\mathbf{x}) + g(\mathbf{x})\mathbf{u}$

.
0 **q** $(C\dot{q} + G)$ ⁺ **0** M^{-1} ^u

Control Barrier Function (CBF) Control Barrier Function

For control affine systems $\dot{\mathbf{x}} = f(\mathbf{x}) + g(\mathbf{x})\mathbf{u}$, we have .
X $\dot{\mathbf{x}} = f(\mathbf{x}) + g(\mathbf{x})\mathbf{u}$.
]
/ $h(x) =$ ∂*h*(*x*) ∂*x* $\boldsymbol{\dot{\chi}}$ $\dot{x} =$ ∂*h*(*x*)

which can be written using Lie derivatives

$$
L_f h(x) = \frac{\partial h(x)}{\partial x} f(x), L_g h(x) = \frac{\partial h(x)}{\partial x} g(x)
$$

$$
\frac{h(x)}{dx}\left(f(x) + g(x)u\right) = L_f h(x) + L_g h(x)u
$$

Control Barrier Function (CBF) Finding a control constraint using $h(x)$

- What are the issues of using as a control constraint? .
]
/ *h*(*x*) ≥ 0, ∀*x* ∈ ∂
	- Abrupt behavior at the boundary, large control action.
- What are the issues of using ? ·
/
. $h(x) \geq 0, \forall x \in$
	- Too restrictive.

Control Barrier Function (CBF) CBF Constraint

For safe control, we can define a safe set \mathcal{C} , such that for a function $h(\mathbf{x})$ it is always positive

$\mathcal{C} = \{ \mathbf{x} \mid h(\mathbf{x}) \geq 0 \}$

If we can find a control **u**, such that the safe set \mathscr{C} is forward invariant, we then have a valid CBF. This condition can be expressed using the inequality

$$
\frac{\partial h}{\partial x}\dot{x} + \alpha(h(\mathbf{x})) = L_f h
$$

The function $\alpha(\ \cdot\)$ is a class \mathcal{K}_∞ function.

Ames et al (2019). Control Barrier Functions: Theory and Applications

$a(\mathbf{x}) + L_g h(\mathbf{x}) \mathbf{u} + \alpha(h(\mathbf{x})) \geq 0$

Control Barrier Function (CBF) CBF Constraint — Analogy to MTA

- You want to go to WSQ by taking either **A** or **C** train.
- **A** train is faster or equal to **C** train between each stop. (Assumption)
- If they start from **Jay St** at the same time, if \blacktriangle never reaches **West 4th**, with never reach **West 4th**.
- If C reached West 4th then A definitely already reached **West 4th**.

Control Barrier Function (CBF) CBF Constraint

- Assume that we have two functions: and $h(x) \geq -\gamma h(x)$, and further we assume that .
]
/ $h(x) = -\gamma h(x)$ $\frac{1}{\overline{1}}$ $\bar{h}(x_1) = \bar{h}(x_0) +$ $\frac{1}{l}$ $\bar{h}(x_0)dt = h(x_0) +$
- we have $\bar{h}(x) \geq 0$.

 $\bar{h}(x) \geq -\gamma \bar{h}(x)$, and further we assume that $\bar{h}(x_0) = h(x_0)$

$$
L_f h(\mathbf{x}) + L_g h(\mathbf{x}) \mathbf{u} \ge -\gamma h(\mathbf{x})
$$

$$
) + \dot{\bar{h}}(x_0)dt \ge h(x_0) + \dot{h}(x_0)dt = h(x_1)
$$

Then it can be concluded that since $\bar{h}(x) \ge h(x)$, and $h(x) = 0$ as time goes to infinity,

CLF-CBF-QP Control Lyapunov Function (CLF)

So far we have been looking at how to perform safe control. Another important quality a controller should possess is stability, i.e. the ability to drive a system

- from a nonzero state to a region around the origin and stay there.
- stable. A CLF is usually denoted using *V*(**x**).

And similar to the concept of CBF, if there exist a CLF then the system is

CLF-CBF-QP Control Lyapunov Function (CLF)

- Some requirements for *V*(**x**)
	- $\Omega_c := \{ \mathbf{x} \in \mathbb{R}^n \mid V(\mathbf{x}) \leq c \}$ is a sub-level set of $V(\mathbf{x})$
	- $V(x) > 0$, $\forall x \neq 0$, and $V(0) = 0$
	- , .
.
/ $V(\mathbf{x}) \leq 0$, $\forall \mathbf{x} \in \Omega_c \setminus \{0\}$
-

 $\forall x_0 \in \Omega_c$, $\exists u(t)$, s.t. $\lim_{t \to \infty}$

$$
u(t), \text{ s.t. } \lim_{t\to\infty} x(t) = \mathbf{0}
$$

Then we say $V(\mathbf{x})$ is a local control Lyapunov function, and its region of attraction (ROA) is Ω_c . And all of the states within its ROA can be asymptotically stabilized to **0**

CLF-CBF-QP Control Lyapunov Function (CLF)

- Usually we want something faster than asymptotic stability, which is exponential stability.
- This can be achieved by enforcing the following constraint .
.
. /
- Basically, this is saying that we want the CLF to decay faster than an exponential.

 $V(\mathbf{x}, \mathbf{u}) + \lambda V(\mathbf{x}) \leq 0$

CLF-CBF-QP QP Formulation

 \blacksquare Here δ is a slack variable that relaxes the CLF constraint

min $u^TRu + p\delta^2$ u, δ subject to $\mathbf{u} \in \mathcal{U}$ $L_f h(\mathbf{x}) + L_g h(\mathbf{x}) \mathbf{u} + \gamma h(\mathbf{x}) \geq 0$ $L_f V(\mathbf{x}) + L_g V(\mathbf{x}) \mathbf{u} + \lambda V(\mathbf{x}) \le \delta$

CBF Example Adaptive Cruise Control

- Maintain a desired velocity while also keeping a safe distance with the leading vehicle.
- This example is borrowed from Jason Choi's guest lecture at UCSD.

https://www.acura.com/tlx/modals/adaptive-cruise-control-with-low-speed-follow

CBF Example Adaptive Cruise Control — Problem Setup

Dynamics:

- Input constraints: $-mc_d g \leq u \leq mc_a g$
- Stability Objective: $v \rightarrow v_d$ (v_d : desired velocity)
- Safety Objective: $z \geq T_h v$ (T_h : lookahead time)

$$
\begin{bmatrix} \dot{p} \\ \dot{v} \\ \dot{z} \end{bmatrix} = \begin{bmatrix} v \\ -\frac{1}{m}F_r(v) \\ v_0 - v \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{m} \\ 0 \end{bmatrix} u
$$

 $F_r(v) = f_0 + f_1 v + f_2 v^2$ is the rolling resistance

CBF Example Adaptive Cruise Control — Formulate CBF for $z \geq T_h v$

One obvious choice of the CBF is $h(\mathbf{x}) = z - T_h v$, then we have the CBF constraint as

If we neglect the effect of the rolling resistance and assuming we are applying

$$
\dot{h}(\mathbf{x}, u) + \gamma h(\mathbf{x}) = \frac{T_h}{m} (F_r(v) - u) + (v_0 - v) + \gamma (z - T_h v) \ge 0
$$

the maximum force $u = -c_d mg$, we have

$$
\dot{h}(\mathbf{x}, u) + \gamma h(\mathbf{x}) = T_h c_d g + v_0 - v + \gamma (z - T_h v) \ge 0
$$

CBF Example Adaptive Cruise Control — Formulate CBF for $z \geq T_h v$

.
]
/

- A CBF should be positive for all states in the safe set, which is defined by $z \geq T_h v$. We can see that the above function may be negative if v is large with respect to c_d and v_0 .
- velocity ν .
- break to the same speed as the lead vehicle v_0 before colliding.

Note that the definition of the safe set did not specify an upper bound on the

The situation is when the distance z is larger than $T_h v$, but the vehicle cannot

$$
h(\mathbf{x}, u) + \gamma h(\mathbf{x}) = T_h c_d g + v_0 - v + \gamma (z - T_h v) \ge 0
$$

CBF Example Adaptive Cruise Control — Formulate CBF for $z \geq T_h v$

- A better choice of CBF is to incorporate the distance needed to slow down the vehicle to v_0 , i.e. distance $>$ lookahead distance $+$ distance to decelerate.
- And under maximum deceleration, i.e. \mathcal{L}

$$
u = -c_d mg
$$
, we have the

$$
\dot{h}(\mathbf{x}, u) = \frac{1}{m} T_h F_r(v) + T_h c_d g
$$

This value is always positive despite the choice of velocity ν .

CBF Example Adaptive Cruise Control — Parameters

 $dt = 0.02$ $sim_t = 20$ $x0 = [0, 20, 100]$

params.v $0 = 14$ params.vd = 24 params.m $= 1650$ params.g = 9.81 params.f $\theta = 0.1$ params.f1 = 5 params.f2 = 0.25 params.ca = 0.3 params.cd = 0.3 params.Th = 1.8

params.u_max = params.ca \star params.m \star params.g params.u_min = -params.cd \star params.m \star params.g

 $\mathcal{N} \times \mathcal{N}$ Parameters are from

 $\mathcal{L} \times \mathcal{L}$

- params.clf.rate = 5 # λ
- $params.$ cbf.rate = 5 # γ

[https://github.com/HybridRobotics/CBF-CLF-Helper/](https://github.com/HybridRobotics/CBF-CLF-Helper/blob/master/demos/run_cbf_clf_simulation_acc.m) [blob/master/demos/run_cbf_clf_simulation_acc.m](https://github.com/HybridRobotics/CBF-CLF-Helper/blob/master/demos/run_cbf_clf_simulation_acc.m)

CBF Example Results

 $v \, \mathrm{[m/s]}$

Exponential Control Barrier Function (ECBF) Motivation

- When writing the CBF constraint in the form of $L_f h(\mathbf{x}) + L_g h(\mathbf{x}) \mathbf{u} + \alpha(h(\mathbf{x})) \geq 0$
- we need the derivative of the CBF \dot{x} to be a function of the control .
X $\dot{\mathbf{x}}$ to be a function of the control \mathbf{u}
- This might not always be the case, the most simple example is the double integrator system $\ddot{\mathbf{x}} = \mathbf{u}$, which can be seen as a point mass with acceleration control. .
X $\ddot{\mathbf{x}} = \mathbf{u}$

Nguyen et al (2016). Exponential Control Barrier Functions for enforcing high relative-degree safety-critical constraints

Exponential Control Barrier Function (ECBF) Motivation — Double Integrator System

- Let us revisit what the CBF constraint does: For a safe set $\mathcal{C} = {\mathbf{x} \mid h(\mathbf{x}) \ge 0}$, if we find the controls that satisfies $L_f h(\mathbf{x}) + \alpha(h(\mathbf{x})) \geq 0$
	- then we can ensure that the double integrator system never exits the safe set.
	- If we define $d(\mathbf{x}) = L_f h(\mathbf{x}) + \alpha(h(\mathbf{x}))$, then we can also have

 $d(\mathbf{x}) \geq 0$

Exponential Control Barrier Function (ECBF) Motivation — Double Integrator System

- We can view $d(\mathbf{x})$ as the new CBF, since we can have the relationship $d(\mathbf{x}) \geq 0 \rightarrow h(\mathbf{x}) \geq 0$
- This means that if we can find a control that ensures $d(\mathbf{x}) \geq 0$, then we can also ensure that $h(\mathbf{x}) \geq 0$.
- We can see $d(\mathbf{x})$ as the new CBF and do what we did for CBFs with relative degree one using another class \mathcal{K}_∞ function $\beta(\ \cdot\)$

.
7

$$
\dot{d}(\mathbf{x}) + \beta(d(\mathbf{x})) \ge 0 \rightarrow d(\mathbf{x}) \ge 0 \rightarrow h(\mathbf{x}) \ge 0
$$

Exponential Control Barrier Function (ECBF)

.
X $\dot{\mathbf{x}} + \alpha(h(\mathbf{x}))$

Motivation — Double Integrator System

Since $d(\mathbf{x}) = h(\mathbf{x}) + \alpha(h(\mathbf{x}))$, we can write it as .
]
/ $h(\mathbf{x}) + \alpha(h(\mathbf{x}))$ $d(\mathbf{x}) = h_{\mathbf{x}}$

Then we have its time derivative as

$$
\dot{d}(\mathbf{x}) = h_{\mathbf{x}\mathbf{x}}\dot{\mathbf{x}}^2 + h_{\mathbf{x}}\ddot{\mathbf{x}} + \frac{d\alpha}{d\mathbf{x}}
$$

dα(*h*(**x**)) *dt* $= h_{xx}$.
X $\dot{x}^2 + h_x u +$ *dα*(*h*(**x**)) *dt*

ECBF Example System Dynamics

We use the system dynamics of a double integrator

x y $\dot{\chi}$ \dot{x} .
V \dot{y} + 0 0 0 0 1 0 0 1 \mathbf{I} u_{χ} u_y

ECBF Example Find CBF

The task is to reach a target position without colliding with an obstacle

ECBF Example ECBF

- We can see a natural choice of the CBF is $h(\mathbf{x}) =$
- However, since we are controlling the acceleration, the CBF has relative degree two. Thus, an ECBF needs to be used

$$
\bar{h} = \dot{h}(\mathbf{x}, \mathbf{u}) + \gamma h(\mathbf{x}) = 2x\dot{x} + 2y\dot{y} + \gamma(x^2 + y^2 - r^2)
$$

$$
= x^2 + y^2 - r^2
$$

ECBF Example CBF-QP

- can write the CBF-QP as
	- \min $||\mathbf{u} \bar{\mathbf{u}}||^2$ **u** subject to $\mathbf{u} \in \mathcal{U}$ $L_f h(\mathbf{x}) -$
- The system is assumed to be control affine

.
X $\dot{\mathbf{x}} = f(\mathbf{x}) + g(\mathbf{x})\mathbf{u}$

Assuming that for each state we have a stabilizing controller $\bar{\mathbf{u}} \sim \pi(\mathbf{x})$, then we

$$
+ L_g h(\mathbf{x}) \mathbf{u} + \alpha(h(\mathbf{x})) \ge 0
$$

ECBF Example Results

Along with a stabilizing controller generated using LQR, we have the following

motion.

CBF Research Directions

- Synthesis CBFs from data
- CBF with model uncertainty
- CBF for new dynamical systems
- Application to new areas

CBF Research Synthesis CBFs from Data

Srinivasan et al., IROS 2020 Robey et al., CDC 2020

Learning Safe Multi-Agent Control with Decentralized Neural Barrier Certificates, Qin et al., ICLR 2021

CBF Research CBF with Model Uncertainty

Safety-Critical Control

Choi et al., RSS 2020

Learning for Safety Critical Control with Control Barrier Functions, Taylor et al., L4DC 2020 *End-to-End Safe Reinforcement Learning through Barrier Functions for Safety Critical*

-
- *Continuous Control Tasks*, Cheng et al., AAAI 2019

CBF Research CBF for New Dynamical Systems

Exponential Control Barrier Functions for enforcing high relative-degree safety-critical constraints, Nguyen et al., ACC 2016

Robey et al., CoRL 2020 Agrawal et al., RSS 2017

CBF Research Applications to New Systems

Xu et al., ICRA 2018 Xu et al., CCTA 2017

Constraint-driven coordinated control of multi-robot systems, Notomista et al., ACC 2019

